
Making our world more productive



# F-Gases and alternatives

# Be cool, protect the environment and get ready for flammable refrigerants

### Diagram 1: HFC phase down schedule (CO<sub>2</sub>e basis, in %)



### The environmental challenge

Fluorinated gases (f-gases) are used in a number of applications including refrigeration and air conditioning, foam blowing, propellants, semiconductor manufacture and electrical switchgear. Many f-gases have a high global warming potential (GWP). When released to the atmosphere, they have been identified as one of the contributors to climate change. The implementation of f-gas regulation 517/2014 since 1.1.2015 targets to the substantial reduction of greenhouse gas emissions. Every sector needs to find solutions to quickly switch to low GWP refrigerants. However, due to different thermodynamic and safety properties of the alternatives, there is no 'one size fits all' solution.

### Refrigerants main use and Safety groups

#### Refrigeration

- $\rightarrow$  Commercial refrigeration
- $\rightarrow$  Industrial refrigeration
- → Domestic refrigeration
- → Transport refrigeration

### Air conditionig

- → Stationary air conditioning
- → Mobile air conditioning

#### Each substance is assigned to a safety group specified as follows:

|                      | Lower toxicity | Higher toxicity |
|----------------------|----------------|-----------------|
| No flame propagation | A1             | B1              |
| Lower flammability   | A2             | B2              |
|                      | A2L*           | B2L*            |
| Higher flammability  | A3             | B3              |

\*A2L and B2L are lower flammability refrigerants with a maximum burning velocity of  $\leq$  10 cm/s

### **Commercial refrigeration**



### Commercial refrigeration applications

### Stand-alone (plug-in) equipment

Used in small stores and supermarkets, such as vending machines relying on hydrocarbons, has become available in recent years throughout the world.  $CO_2$ -based systems have also been introduced.

### Centralized systems

Large refrigeration systems for supermarkets, CO<sub>2</sub> cascade systems are an alternative to commonly used HFC systems in many climates. Hydrocarbons have also proven to be highly efficient alternatives in most applications under high ambient temperatures.

### Condensing units

The same situation as for centralized systems except for hydrocarbons which can not be used in larger condensing units for safety reasons.

### Stand-alone (plug-in) equipment:

|                      | Substance         | GWP | Composition | Safety group | Replacement for |
|----------------------|-------------------|-----|-------------|--------------|-----------------|
| Natural refrigerants | R600a (isobutane) | 3   | -           | A3           | R134a           |

### Centralized systems:

|                      | Substance               | GWP   | Composition                | Safety group | Replacement for     |
|----------------------|-------------------------|-------|----------------------------|--------------|---------------------|
|                      | R290 (propane)          | 3     | _                          | A3           | R134a, R404A, R407A |
| Natural refrigerants | R717 (ammonia)          | -     | -                          | B2L          | R134a, R404A, R407A |
|                      | R744 (CO <sub>2</sub> ) | 1     | -                          | A1           | R134a, R404A, R407A |
| HFC-HFO blends       | R448A (Solstice N40)    | 1 387 | R32/125/1234yf/1234ze/134a | A1           | R404A               |
|                      | R449A (Opteon XP40)     | 1 282 | R32/125/1234yf/134a        | A1           | R404A               |

### Condensing units:

|                      | Substance               | GWP   | Composition                | Safety group | Replacement for     |
|----------------------|-------------------------|-------|----------------------------|--------------|---------------------|
|                      | R290 (propane)          | 3     | -                          | A3           | R134a, R404A, R407A |
| Natural refrigerants | R717 (ammonia)          | 1     | -                          | A1           | R134a, R404A, R407A |
|                      | R744 (CO <sub>2</sub> ) | -     | -                          | B2L          | R134a, R404A, R407A |
| HFC-HFO blends       | R448A (Solstice N40)    | 1 387 | R32/125/1234yf/1234ze/134a | A1           | R404A               |
|                      | R449A (Opteon XP40)     | 1 282 | R32/125/1234yf/134a        | A1           | R404A               |
|                      | R452A* (Opteon XP44)    | 1 945 | R32/125/1234yf             | A1           | R404A               |
|                      | R454C (Opteon XL20)     | 148   | R32/1234yf                 | A2L          | R404A               |
|                      | R513A (Opteon XP10)     | 573   | R1234yf/134a               | A1           | R134a               |

\*For low temperature applications

04

### Industrial refrigeration

### Large cooling facilities for:

- $\rightarrow$  Food processing or
- → Process cooling in chemical industry

|                      | Substance               | GWP   | Composition         | Safety group | Replacement for     |
|----------------------|-------------------------|-------|---------------------|--------------|---------------------|
|                      | R290 (propane)          | 3     | -                   | A3           | R134a, R404A, R407A |
| Natural refrigerante | R717 (ammonia)          | -     | -                   | B2L          | R134a, R404A, R407A |
| Natural refrigerants | R744 (CO <sub>2</sub> ) | 1     | -                   | A1           | R134a, R404A, R407A |
|                      | R1270 (propene)         | 2     | -                   | A3           | R134a, R404A, R407A |
| HFC-HFO blends       | R449A (Opteon XP40)     | 1 282 | R32/125/1234yf/134a | A1           | R404A               |
|                      | R450A (Solstice N13)    | 605   | R1234ze/134a        | A1           | R134a               |
|                      | R513A (Opteon XP10)     | 573   | R1234yf/134a        | A1           | R134a               |
| HFOs                 | R1233zd                 | 4,5   | -                   | A1           | R134a, R404A        |
|                      | R1234ze                 | 1     | -                   | A2L          | R134a, R404A        |

### **Domestic Refrigeration**



- $\rightarrow$  Refrigerators (optimum temp. 3 to 6°C)
- $\rightarrow$  Freezers (optimum temp. at or below -18°C)

In Europe, hydrocarbon refrigerants have replaced the use of HFCs since the mid-1990s.

|                         | Substance            | GWP | Composition | Safety<br>group | Replacement<br>for |
|-------------------------|----------------------|-----|-------------|-----------------|--------------------|
| Natural<br>refrigerants | R600a<br>(isobutane) | 3   | -           | A3              | R134a              |

05

### Stationary air conditioning (AC)



Designed to control the thermal comfort of living and working rooms.

### Movable room AC

|                      | Substance      | GWP | Composition | Safety group | Replacement for |
|----------------------|----------------|-----|-------------|--------------|-----------------|
| Natural refrigerants | R290 (propane) | 3   | -           | A3           | R407A, R410A    |
| HFCs                 | R32            | 675 | -           | A2L          | R407A, R410A    |

### Single split

|                      | Substance      | GWP | Composition | Safety group | Replacement for |
|----------------------|----------------|-----|-------------|--------------|-----------------|
| Natural refrigerants | R290 (propane) | 3   | -           | A3           | R407A, R410A    |
| HFCs                 | R32            | 675 | -           | A2L          | R407A, R410A    |

### Multi split/VRF

|                      | Substance      | GWP | Composition | Safety group | Replacement for |
|----------------------|----------------|-----|-------------|--------------|-----------------|
| Natural refrigerants | R290 (propane) | 3   | -           | A3           | R407A, R410A    |
| HFOs                 | R1234yf        | 4   | -           | A2L          | R407A, R410A    |
|                      | R1234ze        | 1   | -           | A2L          | R407A, R410A    |
| HFCs                 | R32            | 675 | -           | A2L          | R407A, R410A    |

### Chillers

|                      | Substance               | GWP | Composition    | Safety group | Replacement for     |
|----------------------|-------------------------|-----|----------------|--------------|---------------------|
| Natural refrigerants | R290 (propane)          | 3   | -              | A3           | R134a, R407A, R410A |
|                      | R717 (ammonia)          | -   | -              | 2BL          | R134a, R407A, R410A |
|                      | R718(H,0)               | -   | -              | A1           | R134a, R407A, R410A |
|                      | R744 (CO <sub>2</sub> ) | 1   | -              | A1           | R134a, R407A, R410A |
|                      | R1270 (propene)         | 2   | -              | A3           | R134a, R404A, R407A |
| HFC-HFO blends       | R452B (Opteon XL55)     | 676 | R32/125/1234yf | A2L          | R410A               |
|                      | R454B (Opteon XL41)     | 467 | R32/1234yf     | A2L          | R410A               |
|                      | R455A Solstice L40X)    | 148 | R32/1234yf/CO2 | A2L          | R404A               |
|                      | R513A (Opteon XP10)     | 573 | R1234yf/134a   | A1           | R134a               |
| HFOs                 | R1233zd                 | 4,5 | -              | A1           | R134a, R410A        |
|                      | R1234ze                 | 7   | -              | A2L          | R134a, R407A, R410A |
| HFCs                 | R32                     | 675 | -              | A2L          | R407A, R410A        |

In chillers, hydrocarbons and ammonia are safe and energy-efficient alternatives to HFCs, both under moderate and high ambient temperature conditions.

### Heat pumps

|                      | Substance               | GWP | Composition  | Safety group | Replacement for     |
|----------------------|-------------------------|-----|--------------|--------------|---------------------|
|                      | R290 (propane)          | 3   | -            | A3           | R134a, R407A, R410A |
| Natural refrigerants | R718 (H <sub>2</sub> 0) | -   | -            | A1           | R134a, R407A, R410A |
|                      | $R744 (CO_2)$           | 1   | -            | A1           | R134a, R407A, R410A |
| HFC-HFO blends       | R454C (Opteon XL20)     | 146 | R32/1234yf   | A2L          | R410A               |
|                      | R513A (Opteon XP10)     | 573 | R1234yf/134a | A1           | R134a               |
| HFOs                 | R32                     | 675 | -            | A2L          | R134a, R407A, R410A |

Heat pumps are also used with hydrocarbons, additionally CO2 is available on the market.

06

### Transport refrigeration



→ Refrigerated vehicles

→ Refrigerated containers

R448A (Solstice N40), R449A (Opteon XP40) and R452A (Opteon XP44) will be quite common replacement of R404A in road transport refrigerated vehicles.

For refrigerated containers, CO<sub>2</sub> can be used as a long-term alternative.

### Refrigerated vehicles

|                      | Substance               | GWP   | Composition                | Safety group | Replacement for     |
|----------------------|-------------------------|-------|----------------------------|--------------|---------------------|
| Natural refrigerants | R744 (CO <sub>2</sub> ) | 1     | -                          | A1           | R134a, R404A, R410A |
| HFC-HFO blends       | R448A (Solstice N40)    | 1 387 | R32/125/1234yf/1234ze/134a | A1           | R404A               |
|                      | R449A (Opteon XP40)     | 1 282 | R32/125/1234yf/134a        | A1           | R404A               |
|                      | R452A (Opteon XP44)     | 1 945 | R32/125/1234yf             | A1           | R404A               |

### **Refrigerated containers**

|                      | Substance               | GWP   | Composition    | Safety group | Replacement for     |
|----------------------|-------------------------|-------|----------------|--------------|---------------------|
| Natural refrigerants | R744 (CO <sub>2</sub> ) | 1     | -              | A1           | R134a, R404A, R410A |
| HFC-HFO blends       | R452A (Opteon XP44)     | 1 945 | R32/125/1234yf | A1           | R404a               |
|                      | R513A (Opteon XP10)     | 573   | R1234yf/134a   | A1           | R134a               |

## Mobile air conditioning (MAC)

- $\rightarrow$  MAC for cars
- → MAC for buses
- $\rightarrow$  MAC for trains

Use of R134a is prohibited in new cars as a consequence of the EU Directive 2006/40/EC on mobile air-conditioning systems ('MAC Directive'). R1234yf is the main substitute almost exclusively used.

### MAC for cars

|                      | Substance               | GWP | Composition | Safety group | Replacement for |
|----------------------|-------------------------|-----|-------------|--------------|-----------------|
| Natural refrigerants | R744 (CO <sub>2</sub> ) | 1   | -           | A1           | R134a           |
| HFOs                 | R1234yf                 | 4   | -           | A2L          | R134a           |

### MAC for buses

|                      | Substance               | GWP | Composition  | Safety group | Replacement for |
|----------------------|-------------------------|-----|--------------|--------------|-----------------|
| Natural refrigerants | R744 (CO <sub>2</sub> ) | 1   | -            | A1           | R134a           |
| HFC-HFO blends       | R450A (Solstice N13)    | 605 | R1234ze/134a | A1           | R134a           |
|                      | R513A (Opteon XP10)     | 573 | R1234yf/134a | A1           | R134a           |

### MAC for trains

|                      | Substance               | GWP | Composition | Safety group | Replacement for |
|----------------------|-------------------------|-----|-------------|--------------|-----------------|
| Natural refrigerants | R729 (air)              | -   | -           | A1           | R134a           |
|                      | R744 (CO <sub>2</sub> ) | 1   | -           | A1           | R134a           |



## Getting ahead through innovation.

With its innovative concepts, Linde is playing a pioneering role in the global market. As a technology leader, it is our task to constantly raise the bar. Traditionally driven by entrepreneurship, we are working steadily on new high-quality products and innovative processes.

Linde offers more. We create added value, clearly discernible competitive advantages, and greater profitability. Each concept is tailored specifically to meet our customers' requirements – offering standardised as well as customised solutions. This applies to all industries and all companies regardless of their size.

If you want to keep pace with tomorrow's competition, you need a partner by your side for whom top quality, process optimisation, and enhanced productivity are part of daily business. However, we define partnership not merely as being there for you but being with you. After all, joint activities form the core of commercial success.

Linde – Making our world more productive.